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Abstract. The segmentation of retinal layers in images from optical
coherence tomography (OCT) is an important step in ophthalmological
diagnosis and disease monitoring. Current CNN-based models perform
well on images from the same OCT scanner on which they have been
trained, but their performance can degrade drastically when images are
acquired with other devices. We present the first method for OCT layer
segmentation that builds on recent Vision Transformer (ViT) founda-
tion models. We demonstrate that, compared to a state-of-the-art CNN
approach, doing so significantly improves their ability to generalize to
devices for which no training data was available. This highlights the
potential of foundation models to enable more robust medical image
analysis. We also analyze the effect of using different foundation models.
Notably, more generic foundation models from computer vision permit-
ted better generalization than an equally large foundation model that
was specifically trained for OCT analysis.
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1 Introduction

Medical image analysis has become an indispensable tool in modern health-
care, providing critical insights for the diagnosis, treatment, and monitoring of
various medical conditions. Among the advanced imaging techniques, Optical
Coherence Tomography (OCT) stands out due to its non-invasive nature and
high-resolution capabilities, making it particularly valuable in ophthalmology
for detailed visualization of the retinal architecture. A key challenge in leverag-
ing OCT data lies in the accurate segmentation of retinal layers, which is crucial
for diagnosing and tracking diseases such as age related macular degeneration.

One of the major obstacles in developing models for layer segmentation and
other tasks is a performance degradation when the test data is from a different
distribution than the training data. Such domain shift can be caused by different
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imaging conditions or patient demographics and influences where a model can
be deployed.

In recent years, Vision Transformers (ViTs) have emerged as a powerful tool
in the field of computer vision [4]. Unlike traditional convolutional neural net-
works (CNNs), ViTs leverage self-attention mechanisms to model long-range
dependencies in images, offering a more flexible and scalable approach to im-
age analysis. Their ability to capture global context makes them particularly
well-suited for tasks requiring detailed spatial understanding, such as layer seg-
mentation in OCT images. On the down side, training these models from scratch
is very expensive due to the required large batch sizes. The first ViT for example
was trained with a batch size of 4096 [4].

Using pre-trained models hence became a common approach to capitalize on
the benefits of ViTs. These foundation models based on Vision Transformers
represent a significant advancement in building robust and generalizable models
for medical image analysis since they are pre-trained on large-scale datasets, cap-
turing a wide array of visual patterns and features. The extensive pre-training
enables foundation models to generalize better to unseen domains, addressing
the issue of domain shift effectively [8]. By leveraging the comprehensive feature
representations learned during pre-training, these models can be fine-tuned on
specific medical imaging tasks with relatively smaller datasets, thereby enhanc-
ing their applicability and performance in diverse clinical scenarios.

Our first contribution in this work is a method that leverages foundation
models for the segmentation of retinal layers in OCT by combining a Low-Rank
Adaptation (LoRA) fine-tuning [7] of the pre-trained encoder with an added
decoder built from two Transformer blocks and a task specific Layer Head [12].

For the encoder of our model, we can choose from a growing number of
pre-trained ViTs. This will allow us to benefit from even stronger models as
they become available, but it also poses the question which current model yields
the best results. Our second contribution hence is a performance comparison of
layer segmentation models building on different foundations. We evaluate the
layer segmentation performance both in the training domain and under domain
shift and present qualitative results for all models and datasets. As a baseline
and example for a more traditional approach we use the FeatureRefinementNet
(FRN), a CNN specifically designed for OCT Layer Segmentation [12].

2 Related Work

In ophthalmology, self-supervised training methodologies already showed some
promising results for solving downstream tasks. RETFound [18] provides foun-
dation models for color fundus photography as well as OCT, but has only been
evaluated for image classification, not for segmentation. Uni4Eye [3] is another
example where a ViT was pretrained on multimodal ophthalmological data as
a masked auto-encoder and subsequently finetuned to a classification task. An-
other work improved data efficiency on retinal datasets compared to traditional
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U-Net-based methods through self-supervised learning of a Transformer-U-Net
hybrid architecture [16].

Hybrid models incorporating transformers were also explored for segmenta-
tion tasks like OCTA vessel segmentation [14] and layer and fluid segmentation
[17], but without self-supervised learning.

Despite these advances, most segmentation models for ophthalmological data,
including transformer-based ones, were learned in a fully supervised fashion,
while domain-specific self-supervised approaches were evaluated only on clas-
sification tasks. In our work, we demonstrate the benefits of using foundation
models for OCT layer segmentation.

3 Methods

3.1 Datasets

All models were trained on the Duke dataset [5] which consists of OCT scans
from Control and Age-related Macular Degeneration (AMD) subjects, with an-
notations delineating the Inner Limiting Membrane (ILM), the inner boundary of
the Retinal Pigment Epithelium (IBRPE) and Bruch’s Membrane (BM) within
a circular region of 5mm diameter, centered at the Fovea. All data was collected
using Bioptigen devices. The dataset includes 115 volumes from Control subjects
and 269 volumes from AMD subjects and was split into 164 subjects for training,
20 for validation, and 200 for testing, consistent with previous work [12].

The two-dimensional slices in which the 3D OCT images are acquired are
referred to as B-scans, while the individual image columns in a B-scan are called
A-scans. B-scans labeled on less than 50% of the full width were removed from
the training set, resulting in 8,928 B-scans from 164 subject for training. For in
domain evaluation we use all labeled B-scans from the Duke test set. Performance
under domain shift is evaluated using two publicly available OCT datasets.

The OCT5k dataset has 60 manually labeled OCT volumes in total assembled
from 20 AMD, 20 DME and 20 Control subjects resulting in 1672 B-scans. For
each B-scan layer annotations from three graders exist. We compare against
the mean of the three graders. The OBRPE Layer in the OCT5k dataset is
compared to our BM predictions. We do not use the automatic segmentations
provided with the dataset. The data was collected with Heidelberg Spectralis
devices [1]. The AROI dataset has 24 subjects with neovascular AMD (nAMD)
resulting in 1,136 B-scans with manual layer annotations. The imaging device is
Zeiss Cirrus HD OCT 4000 [11].

We also show qualitative results for the RETOUCH dataset [2]. Even though
it lacks the layer annotations that would be required for a quantitative analysis,
it is still interesting due to the diverse imaging devices used (Spectralis, Cirrus
and Topcon), as well as the additional difficulty of showing fluids within the
retina.

No new human or animal studies were conducted; the research utilized exist-
ing datasets with all necessary ethical approvals and informed consent secured,
adhering to ethical standards and regulations.
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3.2 Data Preprocessing and Augmentation

All our presented models process B-scans at a resolution of 224 × 224 pixels.
B-scans were resized to the respective input resolutions and normalized using
the ImageNet channel means and standard deviations. Data augmentation tech-
niques included random horizontal flipping, random vertical shifts (ensuring no
layer cutoff while maintaining a uniform vertical distribution of the retina in
the training data), and random cropping between 80-100% of the original image
dimensions.

3.3 Model Architectures

Our baseline model is the FeatureRefinementNet (FRN), a CNN that was de-
signed to give every output position global context to enable OCT layer segmen-
tation through a Layer Head. The Layer Head is based on the idea that labeling
regions above the top-most layer as 1 and those below each layer as 0 allows its
position to be obtained as a column-wise sum. Positions of subsequent layers are
obtained relative to the previous one via cumulative sums, so that constraining
terms to be non-negative ensures the correct ordering [12].

Our proposed models build on pretrained ViT backbones as a feature encoder
and add two more Transformer blocks as a decoder. All transformer blocks have
embedding dimension 1024, 16 attention heads, and operate on 16 × 16 pixel
patches. The token sequence produced by the decoder is projected to the required
length and then reshaped to the image shape, similar to the self-supervised
pre-training. The final OCT layer output is obtained by feeding the resulting
channels in the input shape to the same Layer Head architecture that is used in
the baseline FRN [12].

An overview of our chosen encoders is given in Table 1. A natural choice for
the encoder is the RETFound model, which provides a ViT-Large encoder that
has been pre-trained on an OCT dataset [18]. Although it was only evaluated
for classification tasks so far, it has been trained as a masked auto-encoder, so
it should maintain sufficiently detailed and localized information about image
contents to serve as a foundation of segmentation as well. To investigate the
benefit of domain-specific pre-training on OCT data, we compare results to a
ViT-Large encoder that is equivalent to the one from RETFound, but has been
trained on ImageNet [6]. Since we are targeting a segmentation task, our com-
parison also includes the encoder from the Segment Anything Model (SAM),
which is trained in a supervised fashion on a large segmentation dataset with
the goal to enable zero-shot generalization [8]. To investigate the relevance of
model size, we evaluate the SAM encoder both in the Large and in the Base
configuration. The last model we test is MedSAM, a SAM model in the Base
configuration that is initialized with the SAM weights and then further trained
on a large and diverse set of medical images [10]. Even though the fraction of
OCT images in the training data of MedSAM is rather small, having seen a large
number of medical images might still be beneficial due to shared properties such
as the predominance of gray-scale images in medical imaging.
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Table 1. Model comparison in terms of number of parameters and required time for
a forward path with a single B-scan on an A40 GPU. We report the average time over
1000 inferences. FRN is a state of the art CNN for layer segmentation and all other
models are based on pretrained Vision Transformers.

Model Parameters Trained Forward Path

FRN [12] 391 555 391 555 ≈ 5ms

MAE-L [6] 331 990 784 27 842 304 ≈ 38ms
RETFound-L [18] 331 990 784 27 842 304 ≈ 38ms

SAM-L [8] 331 990 784 27 842 304 ≈ 38ms
SAM-B [8] 113 201 664 26 767 616 ≈ 20ms

MedSAM-B [10] 113 201 664 26 767 616 ≈ 20ms

SAM-L-noLoRA 330 417 920 26 269 440 ≈ 26ms
SAM-B-noLoRA 112 611 840 26 177 792 ≈ 13ms

We use the SAM implementation that injects additional relative positional
encodings to the self attention. Since these weights are not available for the
other models, we reset and train them from scratch in all models. All other
parameters in the original encoder are frozen during training. Instead, we add
low-rank adaptation (LoRA) [7] to all linear layers in the encoder. For this LoRA
we use a rank of 4 and an initial α of 1 that decays towards earlier layers. α
scales the weight matrix that is learned by the LoRA and is added to the frozen
encoder weights. Hence, changing α is roughly the same as changing the learning
rate [7]. To obtain comparable results for ViT variants of different sizes, we set
αi for the ith layer as

αi = α · β(
depth−i
depth ·24) (1)

where α = 1 is the base value of the parameter, β = 0.8 is the effective decay
rate for a transformer with 24 blocks, depth is the total number of transformer
blocks, and i is the current block index. This matches the range of α to ≈ 0.006
for the initial layer and 1 for the final layer for transformers with varying depths.

3.4 Training Procedure

All models were trained for 50 epochs using the AdamW optimizer [9] with β1 =
0.9, β2 = 0.999 and weight decay of 0.01. For each epoch, 50,000 samples were
drawn with replacement from the training data using a batch size of 32. While
the ViT models were trained with a maximum learning rate of 0.0006 reached
after 10 epochs, then decaying following the one-cycle policy [15], the FRN was
trained without a warm-up starting at a learning rate of 0.001. All models were
trained with a Sum aggregated smooth L1 loss over all layer positions. We use
the Sum instead of a Mean aggregation to make a B-scan’s contribution to the
training proportional to its number of labeled A-scans. Early stopping is applied
after 25 epochs without improvements of the validation loss and we choose the
best model based on the validation loss.
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Table 2. Layer segmentation results for our models building on different foundation
models compared to a state of the art CNN (FRN) on the test set of the training
domain. We show median and 95% quantile of the absolute layer error over all A-
scans. The error is reported in pixel. All models have an input shape of 2242.

Control AMD

ILM IBRPE BM ILM IBRPE BM

FRN 0.14 (0.41) 0.26 (1.25) 0.26 (0.85) 0.14 (0.43) 0.23 (1.1) 0.32 (1.35)

MAE-L 0.16 (0.47) 0.28 (1.18) 0.28 (0.9) 0.16 (0.49) 0.27 (1.17) 0.35 (1.43)
RETFound-L 0.16 (0.49) 0.28 (1.2) 0.28 (0.9) 0.16 (0.51) 0.28 (1.23) 0.35 (1.39)

SAM-L 0.15 (0.44) 0.27 (1.18) 0.28 (0.89) 0.15 (0.46) 0.26 (1.12) 0.34 (1.45)
SAM-B 0.16 (0.49) 0.32 (1.32) 0.31 (0.98) 0.16 (0.55) 0.28 (1.24) 0.42 (2.26)

MedSAM-B 0.16 (0.51) 0.31 (1.31) 0.31 (0.97) 0.17 (0.55) 0.29 (1.26) 0.42 (2.13)

SAM-L no-LoRA 0.15 (0.47) 0.29 (1.22) 0.29 (0.91) 0.16 (0.48) 0.28 (1.2) 0.37 (1.49)
SAM-B no-LoRA 0.16 (0.5) 0.31 (1.29) 0.31 (0.97) 0.17 (0.56) 0.29 (1.29) 0.43 (2.31)

Table 3. Layer segmentation results for our models building on different foundation
models compared to a state of the art CNN (FRN) on the OCT5k and AROI datasets.
We show median and 95% quantile of the absolute layer error over all A-scans. The
error is reported in pixel. All models have an input shape of 2242. Inter-Reader errors
for OCT5k are computed from the A-scan wise reader spread mapped to our models
input resolution.

AROI OCT5k

ILM IBRPE BM ILM IBRPE BM

FRN 0.56 (15.71) 1.44 (18.78) 1.14 (28.4) 0.64 (45.97) 0.8 (44.03) 0.7 (43.94)

MAE-L 0.23 (0.7) 0.59 (3.4) 0.46 (7.81) 0.3 (0.88) 0.39 (1.37) 0.45 (1.24)
RETFound-L 0.35 (1.13) 0.74 (6.71) 0.51 (7.04) 0.94 (2.91) 1.01 (2.91) 0.49 (2.11)

SAM-L 0.21 (0.66) 0.53 (4.0) 0.45 (8.85) 0.26 (0.77) 0.41 (1.3) 0.38 (1.09)
SAM-B 0.35 (2.05) 0.93 (8.89) 0.89 (17.03) 0.45 (2.03) 0.47 (3.09) 0.4 (2.7)

MedSAM-B 0.38 (1.88) 1.07 (7.5) 0.89 (15.75) 0.44 (1.48) 0.47 (2.51) 0.39 (1.96)

SAM-L no-LORA 0.21 (0.65) 0.6 (4.38) 0.49 (7.73) 0.25 (0.93) 0.4 (1.56) 0.41 (1.21)
SAM-B no-LORA 0.42 (2.1) 0.96 (10.77) 0.99 (19.3) 0.69 (2.78) 0.54 (4.28) 0.42 (3.51)

Inter-Reader Spread - - - 0.44 (1.31) 0.44 (1.75) 0.44 (1.31)

4 Results

We first consider the segmentation accuracy in domain, by computing absolute
errors of predicted layer positions on the test set from the Duke data. Due
to their non Gaussian distribution, Table 2 summarizes them via the median
and the 95% quantile over all A-scans. In this setting, differences between the
methods are minor, mostly on the order of fractions of a pixel. The smaller
ViT-Base encoders from SAM-B and MedSAM-B slightly reduce the accuracy,
especially when localizing Bruch’s Membrane (BM) in AMD patients.

Table 3 shows corresponding results when evaluating the same segmentation
models, which have been trained on the Duke dataset, on the AROI and OCT5k
datasets. Significant differences become apparent between the models’ ability to
generalize to images that have been acquired with different devices and partly
show additional, sometimes strong pathologies. The traditional FRN, which pro-
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duced the best results in domain (by a small margin), now clearly provides the
least robust results. In particular, high values for the 95% quantile indicate that
the domain shift leads to a complete collapse of the models’ abilities on a signif-
icant part of the dataset.

Our foundation model based approaches generalize substantially better, with
the best results for SAM-L, closely followed by the MAE that has been trained
on ImageNet. Notably, with respect to almost all numbers, RETFound’s more
specialized pre-training of that same encoder on OCT data reduces the resulting
segmentation model’s ability to generalize. Again, the smaller SAM-B is outper-
formed by the larger SAM-L, and differences between SAM-B and MedSAM-B
remain minor, and somewhat mixed. SAM models trained without LoRA mostly
perform slightly worse compared to their counterparts with LoRA, while the
difference between the SAM-L and SAM-B models remains. Finally, we observe
that the ranking of RETFound-L relative to the other foundation models dif-
fers between the two datasets: On AROI, it still works better than the smaller
SAM-B and MedSAM-B encoders, while it has the last place in terms of median
accuracies on OCT5k. A grouped analysis of the OCT5k results (Control, DME
and AMD) is shown in the supplement, but did not yield further insights.

Our models also compare favorably against the inter-reader spread on the
OCT5k dataset. We computed the spread as median and 95% quantile of all
pairwise differences between readers. In this dataset, all readers start their an-
notations from the same automatic segmentation. Moreover, three iterations of
outlier removals between the readers are performed. We note that, while this
procedure is reasonable to find a good consensus and decrease the chance of an-
notation errors, it implies that estimates of inter-rater reliability are optimistic.

Qualitative results for the above-described models and datasets are shown in
Figure 1. We found differences on typical cases to be small, in line with the good
median accuracy of all models. Therefore, we manually selected B-scans that we
expected to be challenging based on diverse degenerations. To avoid bias in favor
of any particular method, the selection has been made without referring to the
segmentation results. In several examples, the output of the FRN is completely
unusable (rows 4 and 9), while the foundation model based approaches continue
to work well, and differences between them are more subtle. Our selection also
includes a case (row 12) with a strong pathology that was unseen during training,
in which none of the methods yield a correct result.

Additional qualitative results for the RETOUCH dataset are shown in Fig-
ure 2. Again, challenging cases have been selected manually without referring
to the segmentation results. Even though no detailed ground truth is available,
several failure cases are apparent. In particular, the FRN results clearly diverge
from layer positions in several cases to which the MAE-L based method success-
fully generalizes (rows 2, 9, 10, 11). MAE-L, RETFound-L, and SAM-L produce
similar results overall; in one example with substantial differences (row 9), MAE-
L yields the preferred result. In many cases (especially prominent in rows 2, 7,
9, 10, 11, 12) the less powerful ViT-Base encoders lead to obvious deviations
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Fig. 1. Qualitative results for all models on the Duke test data (in domain) and the
OCT5k and AROI datasets (domain shift). B-scans where selected manually to focus on
challenging cases, but without referring to segmentation results. In domain, all models
perform almost identical. Under domain shift, the performance of the FRN degrades
noticeably, while differences between the other models are more subtle.
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Fig. 2. Additional qualitative results for all models on the RETOUCH dataset (do-
main shift). Even though no annotations are available, this dataset provides insight on
additional acquisition devices and pathologies.
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from the true layer positions. Overall, these additional results are in line with
the quantitative results on the datasets for which annotations are available.

5 Discussion

On independent test data from the same domain as the training data, all mod-
els achieved small median errors and 95% quantiles, with minor differences in
segmentation accuracy between the ViT-based models and the traditional CNN
baseline, the FeatureRefinementNet. This suggests that with sufficient training
data, and in the absence of a domain shift, no extensive pre-training is required
for the task of retinal layer segmentation in OCT.

However, an advantage of our foundation model based approach becomes
evident when evaluating the methods under domain shift. On the AROI and
OCT5k datasets, the ViT-based models significantly outperformed the FRN,
which exhibited noticeable degradation in performance. The FRN’s high values
of the 95% error quantile indicate that the CNN-based model fails completely on
a substantial portion of the dataset to which the ViT-based models successfully
generalized. This is also apparent in the qualitative results.

Among the ViT-based models, the SAM-L and the MAE-L encoders, which
have both been pre-trained on large and diverse natural image datasets, provided
the best generalization. Since the image contents and characteristics of retinal
OCT images are quite different from the color photographs that are used to train
general foundation models in computer vision, we expected that the RETFound
encoder, which has been pre-trained specifically on a large OCT dataset, would
be even better suited for our task. Because limited information is available on
its training data, we can only speculate why the RETFound-based model turned
out to generalize less well than those based on SAM-L and MAE-L.

We believe that our results might reflect biases in the RETFound training
data. Even though it contains images from different types of OCT devices [18],
it might be that certain device types dominated, and others might not have
been included at all. This might explain why features from a generic computer
vision model which is completely agnostic to OCT empirically provided the best
generalization across devices. None of the datasets that we used in our study
(Duke, OCT5k, AROI) were included in the training of the RETFound OCT
model [18] or MedSAM [10]. However, it is likely that there are overlaps in
terms of device types, and differences in such overlaps between the training data
of RETFound and the AROI or OCT5k datasets, respectively, might explain the
different ranking of RETFound with respect to the other ViT-based approaches
in those two cases.

In addition to differences in the training data, we note that there are also
differences between the training regimes of the foundation models we compared.
For example, RETFound was trained with a batch-size of 1792 and a base learn-
ing rate of 1×10−3, while the MAE used a batch-size of 4096 and a base learning
rate of 1 × 10−4. Since prior work demonstrated that differences in optimizers
and training hyperparameters of segmentation CNNs that make little difference
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when evaluating in domain can have a significant impact on across-scanner gen-
eralization [13], it is possible that such factors also play a role here.

In our current investigation, the larger SAM-L encoder consistently outper-
formed the smaller SAM-B, especially under domain shift. Our comparison be-
tween models trained with and without LoRA indicates that the better perfor-
mance of SAM-L cannot be attributed to the larger number of LoRA parameters
for the SAM-L model since the gap in performance between SAM-L and SAM-B
remains also without LoRA finetuning of the encoder.

The comparison between SAM-B and MedSAM-B models yielded mixed re-
sults, suggesting that MedSAM’s additional pre-training on medical images did
not confer a consistent advantage for our task. This might be explained by the
relatively small fraction of OCT images in MedSAM’s training data.

Finally, even though the use of foundation models greatly improved gener-
alization across scanners, there was still a noticeable decrease in accuracy com-
pared to the evaluation in domain. Based on inspecting qualitative results, it
is our impression that, in addition to small differences in annotation protocols,
and potentially small remaining effects of scanner changes, pathologies that were
not seen during training continue to pose an important problem that the use of
currently available foundation models does not resolve.

6 Conclusion

In this study, we present a novel method for OCT layer segmentation leveraging
ViT foundation models. Our approach demonstrates significant improvements
in robustness and generalization compared to traditional convolutional neural
networks (CNNs), particularly when faced with domain shifts due to data from
devices not present during training.

Our study underscores the potential of ViT foundation models to enhance
the robustness and generalizability of learning-based medical image analysis,
but also highlights problems that remain despite their use, especially when facing
pathologies that were not seen during training. It also illustrates that the specific
choice of foundation model matters and that, somewhat surprisingly, generic
models from computer vision can sometimes produce better results than more
specialized foundation models whose training more closely matches the images
and task at hand.
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